NOTE

SOME ALKYNYL DERIVATIVES OF IRON AND MOLYBDENUM

M. L. H. GREEN AND T. MOLE*

Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford (Great Britain) (Received December 18th, 1967)

In the course of a study of simple organic systems σ -bonded to transition metals, we have prepared alkynyl derivatives of some mixed carbonyl- π -cyclopentadienyl transition metal complexes. Treatment of the metal halides, π -C₅H₅Fe(CO)₂Cl or π -C₅H₅Mo(CO)₃Cl, with tetrahydrofuran solutions of RC=CMgBr (R=n-butyl, phenyl) gave good yields of the corresponding alkynyl compounds. π -C₅H₅Fe(CO)₂-C=CR or π -C₅H₅Mo(CO)₃C=CR.

The four complexes so prepared were stable in air for prolonged periods (many months in the case of π -C₅H₅Fe(CO)₂C=CPh), and decomposed only slowly in chloroform. Exhaustive attempts to hydrogenate π -C₅H₅Fe(CO)₂C=CPh failed. even when Adam's catalyst was used. This compound was decomposed by concentrated aqueous hydrochloric acid or by hydrogen chloride in organic solvents, but not by dilute aqueous acid, and the parent chloride, π -C₅H₅Fe(CO)₂Cl was isolated as a product.

Gas was evolved upon treatment of π -C₅H₅Fe(CO)₂C=CPh with triphenylphosphine at 160°, and π -C₅H₅FeCO(PPh₃)C=CPh was then crystallised from benzene/light petroleum in good yield. π -C₅H₅FeCO(PPh₃)C=CC₄H₉ was prepared similarly. There was no evidence in these reactions of the insertion of carbon monoxide into the carbon-metal bond to give an acylmetallic compound; by contrast the corresponding alkyliron compounds do yield acyl compounds on treatment with triphenylphosphine¹.

Infrared and analytical data for the alkylmetallic compounds, given in Table 1, and proton magnetic resonance spectral data, given below, are consistent with the proposed structures. The observed coupling (J = 1.1 cps) between the π -cyclopentadienyl protons and the phosphorus nucleus in π -C₅H₅FeCO (PPh₃)C=CPh is worthy of note. The mass spectrum of π -C₅H₅Fe(CO)₂C=CPh showed the parent ion (m/e =278) and fragments including FeC=CPh⁺ (m/e = 157). The most prominent metastable peak (m/e = 124) corresponds to the reaction π -C₅H₅FeC=CPh⁺ $\rightarrow \pi$ -C₅H₅-C=CPh⁺ + Fe.

The extent of π -bonding between alkynyl groups and transition metals is unknown. The observation of a lower C=C stretching frequency for the triphenylphos-

^{*} Present address : Chemical Research Laboratories, C.S.I.R.O., P.O. Box 4331, G.P.O., Melbourne, Victoria (Australia).

Compound	Colour and m.p. (°C)	v(C≡C)	r(C≊O)	Analysis: found (calcd.) (%)		
				c	н	Fe
π -C ₅ H ₅ Fe(CO) ₂ C=CPh	Yellow 120-122 (dec.)	2105m	2000s 2045m	64.4 (64.3)	3.6 (3.5)	19.9 (20.1)
π-C₅H₅Fe(CO)₂C≡CC₄H9	Yellow lia.	2125w	1930s 2045s	60.5 (60.5)	5.4 (5.4)	21.3
π-C ₅ H ₅ FeCO(PPh ₃)C≡CPh	Brown 194-196 (dec.)	2085w	1950s	74.7	4.9 (4.9)	11.1 (10.9)
π -C ₅ H ₅ FeCO(PPh ₃)C=CC ₄ H ₉	Brown 129–132	2095w	1945s	72.2	4.8	()
π-C₅H₅Mo(CO)₃C≡CPh	Yellow-green 55 (dec.)	2100w	1960s 1970s 2045s	55.7 (55.5)	2.9 (2.9)	
π-C₅H₅Mo(CO)₃C≡CC₄H9	Yellow-green 126 (dec.)	2100w	1960s 1970s 2045s	51.4 (51.3)	4.4 (4.3)	

TABLE 1

ALKYNYL DERIVATIVES OF IRON AND MOLYBDENUM PREPARED

phine compounds of iron than for the parent dicarbonyls, suggestst that π -bonding does occur.

EXPERIMENTAL

(Phenylethynyl)- π -cyclopentadienyliron dicarbonyl

Butylmagnesium bromide was prepared by addition of butyl bromide (2.74 g, 20 mmole) and tetrahydrofuran (10 ml) to magnesium turnings (1.0 g) under nitrogen. When reaction was complete, phenylacetylene (2.5 ml, *i.e.* excess) was added and the mixture was warmed to 40° for 30 min to complete the evolution of butane. The Grignard reagent was then diluted with further tetrahydrofuran (20 ml), and the supernatant solution was siphoned slowly under nitrogen into a stirred solution of π -cyclopentadienyliron dicarbonyl chloride (2.4 g, 12 mmole) in tetrahydrofuran (20 ml) at -60° under nitrogen. The resulting solution was allowed to warm to room temperature, and was then hydrolysed by pouring into dilute (1:20) aqueous hydrochloric acid. The oil which separated slowly solidified, and was then filtered, dissolved in ether, and precipitated by addition of light petroleum to give π -C₅H₅Fe(CO)₂-C=CPh (2.0 g, 60% yield) as a yellow solid, m.p. 120-122° (dec.), which could be recrystallised from ethanol and sublimed.

The other alkynylmetallic compounds were prepared similarly but in lower yields; in these cases hydrolysis was followed by chromatography on aluminium.

Proton magnetic resonance spectra

Spectra were determined in deuterochloroform using a Perkin-Elmer 60 Mc spectrometer. Chemical shifts (ppm) are given on the τ scale.

$\begin{array}{ll} \pi\text{-}C_{S}H_{S}Fe(CO)_{2}C\equiv CPh & 2.7 \ (complex)^{a}; \\ \pi\text{-}C_{S}H_{S}FeCO(PPh_{3})C\equiv CPh & 2-3 \ (complex)^{a}; \\ \pi\text{-}C_{S}H_{S}Fe(CO)_{2}C\equiv CC_{4}H_{9} & 5.00 \ (singlet)^{b} \\ \pi\text{-}C_{5}H_{S}Mo(CO)_{3}C\equiv CPh & 2.6-3.8 \ (complex)^{a}; \\ \pi\text{-}C_{5}H_{S}Mo(CO)_{3}C\equiv CC_{4}H_{9} & 4.51 \ (singlet)^{b}; \end{array}$	4.95 (singlet) ^b 5.43 [doublet $J(P-H) = 1.1 \text{ cps}]^b$ 7.6–9.3 (three multiplets) ^c 4.43 (singlet) ^b 7.66–9.25 (three multiplets) ^c
---	---

" Phenyl protons. " π -C₅H₅ protons. " C₄H₉ protons.

Mass spectra

A Hitachi Perkin-Elmer instrument operating at an ionising voltage of 70 e.v. was used.

REFERENCE

1 M. L. H. GREEN AND C. R. HURLEY, J. Organometal. Chem., 10 (1967) 188.

J. Organometal. Chem., 12 (1968) 404-406